Spark 提交应用程序

2018年06月09日 09:26 | 2675次浏览

在Spark bin目录下的spark-submit可以用来在集群上启动应用程序。它可以通过统一的接口使用Spark支持的所有集群管理器 ,所有你不必为每一个管理器做相应的配置。


用spark-submit启动应用程序

bin/spark-submit脚本负责建立包含Spark以及其依赖的类路径(classpath),它支持不同的集群管理器以及Spark支持的加载模式。

./bin/spark-submit \
  --class <main-class>
  --master <master-url> \
  --deploy-mode <deploy-mode> \
  --conf <key>=<value> \
  ... # other options
  <application-jar> \
  [application-arguments]

一些常用的选项是:

  • --class:你的应用程序的入口点(如org.apache.spark.examples.SparkPi)

  • --master:集群的master URL(如spark://23.195.26.187:7077)

  • --deploy-mode:在worker节点部署你的driver(cluster)或者本地作为外部客户端(client)。默认是client。

  • --conf:任意的Spark配置属性,格式是key=value。

  • application-jar:包含应用程序以及其依赖的jar包的路径。这个URL必须在集群中全局可见,例如,存在于所有节点的hdfs://路径或file://路径

  • application-arguments:传递给主类的主方法的参数

一个通用的部署策略是从网关集群提交你的应用程序,这个网关机器和你的worker集群物理上协作。在这种设置下,client模式是适合的。在client模式下,driver直接在spark-submit进程 中启动,而这个进程直接作为集群的客户端。应用程序的输入和输出都和控制台相连接。因此,这种模式特别适合涉及REPL的应用程序。

另一种选择,如果你的应用程序从一个和worker机器相距很远的机器上提交,通常情况下用cluster模式减少drivers和executors的网络迟延。注意,cluster模式目前不支持独立集群、 mesos集群以及python应用程序。

有几个我们使用的集群管理器特有的可用选项。例如,在Spark独立集群的cluster模式下,你也可以指定--supervise用来确保driver自动重启(如果它因为非零退出码失败)。 为了列举spark-submit所有的可用选项,用--help运行它。

# Run application locally on 8 cores
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master local[8] \
  /path/to/examples.jar \
  100

# Run on a Spark Standalone cluster in client deploy mode
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master spark://207.184.161.138:7077 \
  --executor-memory 20G \
  --total-executor-cores 100 \
  /path/to/examples.jar \
  1000

# Run on a Spark Standalone cluster in cluster deploy mode with supervise
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master spark://207.184.161.138:7077 \
  --deploy-mode cluster
  --supervise
  --executor-memory 20G \
  --total-executor-cores 100 \
  /path/to/examples.jar \
  1000

# Run on a YARN cluster
export HADOOP_CONF_DIR=XXX
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master yarn-cluster \  # can also be yarn-client for client mode
  --executor-memory 20G \
  --num-executors 50 \
  /path/to/examples.jar \
  1000

# Run a Python application on a Spark Standalone cluster
./bin/spark-submit \
  --master spark://207.184.161.138:7077 \
  examples/src/main/python/pi.py \
  1000

Master URLs

传递给Spark的url可以用下面的模式

Master URL描述
local用一个worker线程本地运行Spark
local[K]用k个worker线程本地运行Spark(理想情况下,设置这个值为你的机器的核数)
local[*]用尽可能多的worker线程本地运行Spark
spark://HOST:PORT连接到给定的Spark独立部署集群master。端口必须是master配置的端口,默认是7077
mesos://HOST:PORT连接到给定的mesos集群
yarn-client以client模式连接到Yarn集群。群集位置将基于通过HADOOP_CONF_DIR变量找到
yarn-cluster以cluster模式连接到Yarn集群。群集位置将基于通过HADOOP_CONF_DIR变量找到



小说《我是全球混乱的源头》

感觉本站内容不错,读后有收获?小额赞助,鼓励网站分享出更好的教程


上一篇:Spark GraphX 例子 下一篇:独立运行Spark
^