Python的内建模块itertools提供了非常有用的用于操作迭代对象的函数。
首先,我们看看itertools提供的几个“无限”迭代器:
>>> import itertools >>> natuals = itertools.count(1) >>> for n in natuals: ... print(n) ... 1 2 3 ...
因为count()会创建一个无限的迭代器,所以上述代码会打印出自然数序列,根本停不下来,只能按Ctrl+C退出。
cycle()会把传入的一个序列无限重复下去:
>>> import itertools >>> cs = itertools.cycle('ABC') # 注意字符串也是序列的一种 >>> for c in cs: ... print(c) ... 'A' 'B' 'C' 'A' 'B' 'C' ...
同样停不下来。
repeat()负责把一个元素无限重复下去,不过如果提供第二个参数就可以限定重复次数:
>>> ns = itertools.repeat('A', 3) >>> for n in ns: ... print(n) ... A A A
无限序列只有在for迭代时才会无限地迭代下去,如果只是创建了一个迭代对象,它不会事先把无限个元素生成出来,事实上也不可能在内存中创建无限多个元素。
无限序列虽然可以无限迭代下去,但是通常我们会通过takewhile()等函数根据条件判断来截取出一个有限的序列:
>>> natuals = itertools.count(1) >>> ns = itertools.takewhile(lambda x: x <= 10, natuals) >>> list(ns) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
itertools提供的几个迭代器操作函数更加有用:
chain()
chain()可以把一组迭代对象串联起来,形成一个更大的迭代器:
>>> for c in itertools.chain('ABC', 'XYZ'): ... print(c) # 迭代效果:'A' 'B' 'C' 'X' 'Y' 'Z'
groupby()
groupby()把迭代器中相邻的重复元素挑出来放在一起:
>>> for key, group in itertools.groupby('AAABBBCCAAA'): ... print(key, list(group)) ... A ['A', 'A', 'A'] B ['B', 'B', 'B'] C ['C', 'C'] A ['A', 'A', 'A']
实际上挑选规则是通过函数完成的,只要作用于函数的两个元素返回的值相等,这两个元素就被认为是在一组的,而函数返回值作为组的key。如果我们要忽略大小写分组,就可以让元素'A'和'a'都返回相同的key:
>>> for key, group in itertools.groupby('AaaBBbcCAAa', lambda c: c.upper()): ... print(key, list(group)) ... A ['A', 'a', 'a'] B ['B', 'B', 'b'] C ['c', 'C'] A ['A', 'A', 'a']
小结
itertools模块提供的全部是处理迭代功能的函数,它们的返回值不是list,而是Iterator,只有用for循环迭代的时候才真正计算。
参考源码
感觉本站内容不错,读后有收获?小额赞助,鼓励网站分享出更好的教程
上一篇:python hashlib
下一篇:echarts K线图(上证指数2)
^